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Abstract: In this paper, ambiguity aversion to uncertain survival probabilities is

introduced in a life-cycle model with a bequest motive to study the optimal demand

for annuities. Provided that annuities return is sufficiently large, and notably when

it is fair, positive annuitization is known to be the optimal strategy of ambiguity

neutral individuals. Conversely, we show that the demand for annuities decreases with

ambiguity aversion and that there exists a finite degree of aversion above which the

demand is non positive: the optimal strategy is then to either sell annuities short or

to hold zero annuities if the former option is not available. To conclude, ambiguity

aversion appears as a relevant candidate for explaining the annuity puzzle.
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1 Introduction

According to the life-cycle model of consumption with uncertain lifetime proposed by

Yaari [46], full annuitization should be the optimal strategy followed by a rational in-

dividual without altruistic motives, provided that annuities are available. Since this

theoretical prediction does not meet the facts (see Peijnenburg et al. [37]), the initial

framework has hence been extended and many explanations of the so-called annuity

market participation puzzle have been proposed (see Brown [6] or Sheshinski [42]).

However, as shown by Davidoff et al. [9], positive annuitization still remains optimal

under very general specifications and assumptions, including intergenerational altru-

ism. According to the authors, the literature to date has failed to identify a sufficiently

general explanation for consumers’ aversion to annuities, suggesting that psycholog-

ical or behavioral biases might be rather important in decisions involving uncertain

longevity1.

In this paper, we consider the possibility that a fully rational individual displaying

some aversion toward ambiguous survival probabilities may be likely to exhibit a low

demand for annuities. Indeed, in a life-cycle model with a bequest motive, we show that

a zero annuitization strategy is optimal if the ambiguity aversion is sufficiently large.

Instead, it is optimal to sell annuities short or, under some conditions (see Yaari [46]

and Bernheim [3]), to purchase pure life insurance policies. For the sake of simplicity,

we do not make any distinction between the two financial products and only deal with

the demand for annuities.

Before detailing our results, let us first discuss the two main assumptions of the

paper: the uncertainty on survival probabilities and the aversion toward this ambiguity.

1Most notably, Brown et al. [8] use the framing hypothesis and show that in an investment

frame, individuals prefer non-annuitized products. This idea is developed in Benartzi et al. [2] who

demonstrate the importance of the availability and framing of annuity options in the demand for

annuity.
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Despite all the available information displayed in Life Tables, we think that survival

probabilities are nevertheless ambiguous for individuals.

First, there is a rather strong heterogeneity in the age at death. According to Ed-

wards and Tuljapurkar [10], past age 10, its standard deviation is around 15 years in the

US. After having controlled for sex and race differentials and for various socioeconomic

statuses, they found a residual heterogeneity that remains significant. Heterogeneity is

notably explained by biological differences that are not necessarily known to the indi-

vidual. According to Post and Hanewald [40], this objective heterogeneity is positively

linked to individuals’ subjective estimate of survival probabilities. Second, the large

increase in life expectancy experienced by populations over the last two centuries was

characterized by changes in the distribution of survival probabilities at each age. This

is referred to as the epidemiological transition and features an increase in the dispersion

of heterogeneity computed in the later years. Moreover, opposite factors such as med-

ical progress versus the emergence of new epidemic diseases cause some uncertainty in

the dynamics of the distribution per age. Based on Life Tables, an individual belonging

to a given cohort may, at best, only know the true distributions of past cohorts but

remains uncertain about his/her own. Moreover, due to the small number of observa-

tions, data concerning the much later years are not reliable and there is no consensus

among demographers about forecasts of the mean survival rate (see especially Oeppen

and Vaupel [34]). The longevity risk, defined as the risk that people live longer than

expected, is according to the IMF [25], systematically underestimated by governments

and pension managers.

The assumption of an aversion toward the ambiguity of survival probabilities is also

supported by a great deal of evidence. Initial intuitions concern health risks and can

be found in the study by Keynes [26], in which he considers patients who must decide

between two medical treatments. Keynes argues that most individuals would choose a

treatment that has been extensively used in the past and has a well-known probability
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of success, rather than a new one, for which there is no information about its probability

of success2. Moreover, the celebrated Ellsberg [13] experiment has also been applied

to health and longevity risks in many studies using hypothetical scenarios. Among

them, Viscusi et al. [45] show that individuals have a significant aversion to ambiguous

information about the risk of lymphatic cancer. More recently, real case studies have

confirmed that individuals are ambiguity averse. Riddel and Show [41] have found a

negative relationship between the perceived uncertainty about the risks associated with

nuclear waste transportation and the willingness to be exposed to such risks. Similarly,

scientific disagreement about the efficiency of vaccination (see Meszaros et al. [34]) or

screening mammography recommendations (see Han et al. [21], [20]) has been found to

be negatively correlated with the perception of disease preventability and the decisions

of preventive behaviors.

We consider a life-cycle model with consumption and bequest similar to Davidoff

et al. [9]. We do not focus on market imperfections but instead assume, as in Yaari

[46], some warm-glow altruism. Remark that a bequest motive is necessary to obtain

some partial annuitization but it does not eliminate the advantage of annuities since

they return more, in case of survival, than regular bonds. Our main departure from

Yaari [46] and Davidoff et al. [9]’s works hinges on the assumption of ambiguity aversion

toward uncertain survival probabilities. We apply the recent model for ambiguity aver-

sion proposed by Klibanoff et al. [27] to a decision problem in a state-dependent utility

framework yield by uncertain lifetimes. The representation functional is an expectation

of an expectation: the inner expectation evaluate the expected utilities corresponding

to possible first order probabilities while the outer expectation aggregates a transform

of these expected utilities with respect to a second order prior3.

We obtain the following results. Provided that annuities return is sufficiently larger

2This idea was formalized and developed by Manski [32].

3Gollier [17] has applied this framework to a standard portfolio problem and shown that ambiguity

aversion does not necessarily reinforce risk aversion.
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than bonds return, and notably when it is fair, the optimal share of annuities in the

portfolio is positive if the individual is ambiguity neutral. This is not surprising as the

individual maximizes a standard expected utility computed with a subjective mean

survival probability. Conversely, as the index of ambiguity aversion of Klibanoff et

al. [27] increases, the optimal demand for annuities decreases and there exists a finite

threshold above which the demand is non positive. Our results are obtained under

general specifications of both utility functions and survival probability distributions4.

The aversion to ambiguous survival probabilities hence appears as a good candidate

to explain the observed aversion to annuities. A numerical application of our model

suggests that the impact of ambiguity aversion is likely to be quantitatively large.

Our results strongly differs from those obtained with an expected utility framework,

may the survival probability be deterministic (as in Yaari [46]) or stochastic (Huang et

al. [24], Post [39]). Applications of non-expected utility models to health and longevity

uncertainties have been scarce. Among exceptions, Eeckhoudt and Jevela [12] study

medical decisions and Treich [43] the value of a statistical life. Interestingly, Ponzetto

[38] and Horneff et al. [23] apply Epstein and Zin [14]’s recursive utility framework to

uncertain longevity. They show that the utility value of annuitization is decreasing in

both risk aversion and elasticity of intertemporal substitution. Positive annuitization

nevertheless remains optimal. Moreover, Groneck et al [19] apply the Bayesian learning

model under uncertain survival developed by Ludwig and Zimper [31] to a life-cycle

model without annuity markets. The dynamics of savings over the life-cycle is closer

to the empirical observations. Similarly, Holler et al. [22] study a life-cycle model

extended to incorporate an aversion to uncertain lifespans, as developed by Bommier

[4].

Section 2 proposes a model of consumption and bequest with uncertain lifetimes

and studies the annuitization decision under the assumption of ambiguity neutrality.

4Moreover, our results could also be derived within the framework proposed by Gajdos et al. [15].
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Section 3 introduces the Klibanoff et al. [27] framework to analyze the impact of

ambiguity aversion on optimal choices. It contains our main theoretical results and a

numerical application. Concluding remarks are in Section 4 and proofs are gathered in

the Appendix.

2 Annuitization in a benchmark expected utility frame-

work

This section presents the model and studies the optimal demand for annuities in the

expected utility case (EU, hereafter). This framework, which is used in most arti-

cles studying annuities, is a useful benchmark to be compared with the model with

ambiguity aversion derived in Section 3.

We consider a static model of consumption and bequest under uncertain lifetime

similar to Yaari [46] and Davidoff et al. [9]. The length of life is at most two periods

with the second one being uncertain. The Decision Maker (DM, hereafter) derives

utility from a bequest that might happen at the end of periods 1 and 2 and, upon

survival, from consumption in period 2. At the first period, the DM is endowed with

an initial positive income w that can be shared between bonds and annuities. Bonds

return R > 0 units of consumption in period 2, whether the DM is alive or not, in

exchange for each unit of the initial endowment. Conversely, annuities return Ra ≥ R

in period 2 if the DM is alive and nothing if she is not alive. Due to the possibility

of dying, the demand for bonds should be non negative and therefore annuities are

the only way to borrow. The selling of annuities is here equivalent to the purchasing

of pure life insurance policies (see Yaari [46] and Bernheim [3]). In the remaining of

the paper, we will consider the selling of annuities as a zero annuitization strategy.

If alive during the second period, the DM may allocate her financial wealth between

consumption and bequest. Since death is certain at the end of period 2, the latter is
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exclusively a demand for bonds.

Denote by a, the demand for annuities and by w−a, the demand for bonds, decided

in period 1. Moreover, let c and x denote the consumption and the bequest decided in

period 2. The budget constraint writes:

c = c(a, x) = Raa +R(w − a)− x, (1)

and the non negativity constraints are:

c ≥ 0, x ≥ 0, a ≤ w. (2)

Following Davidoff et al. [9], we assume that whatever the length of the DM’s life,

bequests are received in period 3, involving additional interest: the bequest is therefore

xR, if the DM is alive in period 2, while it is (w − a)R2, if she is not.

We assume that the DM’s utility is u[c, xR] if alive in period 2 and v[(w− a)R2] if

she is not alive. Functions u and v are supposed to satisfy the following assumptions:

Assumption 1. The twice continuously differentiable function u : IR2
+ → IR+

is strictly concave5 and satisfies u′1[c, ̺] > 0, u′2[c, ̺] > 0, lim
c→0

u′2[c, ̺] = +∞ and

lim
̺→0

u′2[c, ̺] = +∞. The twice continuously differentiable function v : IR+ → IR+ is

increasing, strictly concave and satisfies lim
̺→0

v′[̺] = +∞. Goods c and x are normal6.

Assuming infinite marginal utilities when consumption or bequest go to zero ensures

that inequalities lying in (2) are strict at the optimum. This assumption, of course,

has no impact on the sign of the optimal demand for annuities.

Assumption 2. u[0, 0] = 0 and, for all non negative c and ̺, u[c, ̺] ≥ v[̺] and

u′2[c, ̺] ≥ v′[̺].

5The function u is strictly concave if and only if the Hessian of u is negative definite, or equivalently,

if and only if u′′

11
< 0 and u′′

11
u′′

22
−u′′ 2

12
> 0 (see Theorems M.C.2 and M.D.2 in Mas-Colell et al [33]).

6Assuming the normality of c and x means assuming u′′

12
− Ru′′

22
> 0 and Ru′′

12
− u′′

11
> 0 (see

Appendix A).
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Both the utility and the marginal utility of a given bequest is larger if the DM is

alive than if she is not. These assumptions are commonly used in the literature on the

economic valuation of risks to health and life (see e.g. Viscusi and Aldy [44]). They are

obviously satisfied when the utility if alive is separable, i.e. for u[c, xR] = h[c] + v[xR],

as in Yaari [46] and Davidoff et al. [9].

Let us suppose that the survival probability, denoted p ∈ (0, 1), is known by the

DM. Equivalently, we may interpret p as a survival probability subjectively evaluated

by the DM and thus the problem is the one of a subjective expected utility maximizer.

Given p, the DM maximizes his expected utility, i.e. solves the EU problem, denoted

(P0):

max
a,x

U(a, x, p)

s.t.





U(a, x, p) = pu[c(a, x), xR] + (1− p)v[(w − a)R2],

c = c(a, x) = Raa+R(w − a)− x. (P0)

The solution of (P0), denoted (ā, x̄), satisfies the FOCs:

p(Ra − R)u′1[c(ā, x̄), xR]− (1− p)R2v′[(w − ā)R2] = 0, (3)

−u′1[c(ā, x̄), x̄R] +Ru′2[c(ā, x̄), x̄R] = 0. (4)

We remark that the survival probability affects the optimal demand for annuities

but not, as shown by equation (4), the optimal allocation of the financial wealth be-

tween consumption and bequest. It will be useful to use the condition (4) to define the

application x̄ = f(ā), which satisfies 0 ≤ f ′(a) ≤ Ra−R. Hence, at the optimum, if the

DM survives, her consumption ĉ (a) = c(a, f(a)) and her bequest f(a) increase with the

demand for annuities and the optimal behavior is given in the following proposition:

Proposition 1 .

The optimal demand for annuities, denoted ā, which solves the EU problem (P0):

(i) is lower than w but larger than −Rw/(Ra −R).
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(ii) is positive if and only if Ra is larger than a threshold R̂a ∈ (R,R/p).

(iii) is positive if and only if p is larger than a threshold p̂ ∈ (0, 1).

Proof – See Appendix A. �

The optimal demand for annuities can be positive or negative and the role of the

annuities return is crucial in that matter. The share of annuities in the portfolio

obviously increases with the return Ra. Similarly, a larger p reduces the distance

between the return Ra and its fair value R/p. To be more precise, let us merge equations

(3) and (4) to obtain:

(Ra − R)pu′2[ĉ(ā), x̄R]− R(1− p)v′[(w − ā)R2] = 0. (5)

Let us now examine two polar cases. Consider first that annuities and bonds returns

are equal, i.e. suppose that Ra = R. The budget constraint (1) implies that the

consumption is independent from the demand of annuities and, with equation (5), we

conclude that the optimal behavior is to sell an infinite quantity of annuities to finance

the purchase of an infinite quantity of bonds (−ā = x̄ → +∞). Conversely, for an

actuarially fair return of annuity, such that Ra = R/p, equation (5) rewrites:

u′2[ĉ(ā), x̄R]− v′[(w − ā)R2] = 0.

Using the fact that the marginal utility of a given bequest is larger in case of survival

(Assumption 2), one concludes that x̄ ≥ (w − ā)R and thus, with the budget con-

straint, that c̄ = ĉ(ā) ≤ Raā. As a consequence, the optimal demand for annuities is

necessarily positive. Between these two cases, there exists a Ra ∈ (0, R/p) such that

the demand for annuities is zero.

The Proposition 1 is consistent with the findings of the literature on annuities.

First, a bequest motive appears as a necessary condition for zero annuitization. Then,

Davidoff et al. [9] shows that positive annuitization remains optimal if the return is

fair. Conversely, Lockwood [30] shows that if the return is small enough, the demand
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is negative. In the next section, we consider the possibility of having a non positive

demand for annuities for large returns, and most notably in the case of an actuarially

fair annuity pricing.

3 Annuitization with ambiguity averse individuals

This section applies the recent rationale for ambiguity aversion proposed by Klibanoff

et al. [27] to our life-cycle problem with uncertain lifetimes.

The first difference with the previous section’s model is that we now assume that

survival probabilities are uncertain. More precisely, the DM does not know her own

probability distribution but only knows the set of possible distributions. There exist

states of nature associated with given survival probabilities that may be interpreted as

health types, to which the DM subjectively associates a probability to be in. Ambiguity

is hence modeled as a second order probability over first order probability distributions.

Let us denote the random (continuous or discrete) survival probability by p̃ whose

support is denoted Supp(p̃), and the survival expectancy as it is evaluated by the

DM by E(p̃) = p. It is supposed, since it does not affect the main results, that p

corresponds to the mean survival probability. Denoting by pm the lower bound of

Supp(p̃), we consider some restrictions on the probability distribution of the survival

probability p̃.

Assumption 3. pm < p̂ < p, where p̂ is defined in Proposition 1.

Assumption 3 gives a lower bound for the mean survival probability or, equiva-

lently, implies that the annuity return would be sufficiently large to induce a positive

annuitization in the EU case. In particular, we still allow annuities to be fairly priced.

The expected utility, denoted U(a, x, p̃), is thus also a random variable that writes:

U(a, x, p̃) = p̃u[c(a, x), xR] + (1− p̃)v[(w − a)R2], (6)

The second difference with the previous section’s model is that we also assume that

9
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the DM has smooth ambiguity preferences. Following Klibanoff et al [27], the aversion

to ambiguity is introduced using a function φ whose concavity represents an index of

this aversion. The utility function of the DM is then given by an expectation of an

expectation. The inner expectations evaluate the expected utilities corresponding to

possible first order probabilities while the outer expectation aggregates a transform of

these expected utilities with respect to the second order prior. The utility function

writes:

φ−1(E(φ(U(a, x, p̃)))), (7)

where φ satisfies the following restrictions:

Assumption 4. The twice continuously differentiable function φ : IR+ → IR is

increasing and concave.

Limit cases of (7) are interesting. First, when φ is linear, the DM is ambiguity

neutral. Using (6), the utility function (7) rewrites:

φ−1(E(φ(U(a, x, p̃))))|φ′′=0 = U(a, x, p), (8)

which is linear with respect to the mean survival probability, p. Equation (8) corre-

sponds to the EU case studied section 2. Alternatively, under some conditions7 that

will be assumed to be satisfied, the maxmin expected utility is obtained when the

absolute ambiguity aversion, given by −φ′′/φ′, is infinite. The DM then maximizes

the expected utility for the worst possible realization of p̃. Formally, this a maxmin

problem that writes:

lim
−

φ′′(.)

φ′(.)
→+∞

φ−1(E(φ(U(a, x, p̃)))) = max
a,x

min
pε∈Supp(p̃)

U(a, x, pε). (9)

This Gilboa and Schmeidler’s [16] kind of problem has been studied by d’Albis and

Thibault [1] in a framework with endogenous saving rates.

The ambiguity averse DM faces the following problem, denoted (Pφ):

7See Proposition 3 page 1867 in Klibanoff et al. [27].
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max
a,x

φ−1(E(φ(U(a, x, p̃))))

s.t.





U(a, x, p̃) = p̃u[c(a, x), xR] + (1− p̃)v[(w − a)R2],

c(a, x) = Raa+R(w − a)− x. (Pφ)

Then, the solution (a⋆, x⋆) of (Pφ) satisfies the FOCs:

E(φ′(U(a⋆, x⋆, p̃))[p̃(Ra −R)u′1[c(a
⋆, x⋆), x⋆R]− (1− p̃)R2v′[(w − a⋆)R2]]) = 0, (10)

−u′1[c(a
⋆, x⋆), x⋆R] +Ru′2[c(a

⋆, x⋆), x⋆R] = 0. (11)

Equation (11) is equivalent to (4). Since the trade-off between consumption and

bequest if alive is not affected by the survival probability, it is also independent from

ambiguity aversion. As in the previous section, we define x⋆ = f(a⋆). From (10), it is

clear that ambiguity aversion however affects the demand for annuities. To evaluate

this effect, we are going to consider two DM distinguished only by their ambiguity

attitude. The ambiguity aversion of the first is characterized by the function φ, while

the one of the second is given by an increasing and concave transformation of φ; the

second DM being thus said more averse to ambiguity8. Let us turn to our main results.

Proposition 2 .

The optimal demand for annuities, denoted a⋆, which solves the problem (Pφ):

(i) decreases with ambiguity aversion and is lower than ā.

(ii) is always negative when ambiguity aversion is infinite.

Then, there exists a finite degree of ambiguity aversion such that the zero annuiti-

zation strategy is optimal if and only if the DM’s ambiguity aversion is larger than this

threshold.

Proof – See Appendix B. �

Ambiguity aversion determines the optimal exposure to uncertainty. Obviously, a

more ambiguity averse DM chooses to be less exposed, which means that she aims at

8See Theorem 2 page 1865 in Klibanoff et al. [27].
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smoothing the expected utilities computed in each state of nature. Proposition 2 states

this can be achieved by reducing the share of annuities in the portfolio. Moreover, the

strategy to sell annuities short is optimal provided that ambiguity aversion is sufficiently

large. These results hold for arbitrarily low bequest motive and arbitrarily large annuity

returns, and notably when the latter are fair. Let us point out that our results may

not be intuitive and that one may think an annuity as an insurance product whose

demand should increase with the aversion to uncertain lifetime. Let us now explain

why this is not the case.

First, Proposition 2 states that the demand for annuities decreases with ambiguity

aversion. Let us consider two states of nature, 1 and 2, for which the survival probabil-

ities are respectively p1 and p2. Using equation (6), the optimal difference of expected

utilities in both states is thus:

(p1 − p2)
{
u [c (a⋆, x⋆) , x⋆R]− v

[
(w − a⋆)R2

]}
, (12)

which is proportional to the optimal difference between the utility if the DM lives for

two periods and the utility if she lives for one period only. As the utility depends on the

bequest, the sign of the latter difference is not a priori given. As an intermediary result,

we proved that it is always positive. We notice this is not an immediate implication

of Assumption 2 since the bequest depends on whether the DM lives for one or two

periods. Then, we proved that reducing the demand for annuities reduces the difference

(12). The idea is that upon survival, the utility increases with the share of annuities

in the portfolio. As a consequence, to reduce the exposure to life uncertainty, the DM

has to increase her demand for bonds and reduce her demand for annuities.

Second, Proposition 2 states that it is optimal to sell annuities short when the

ambiguity aversion is infinite. The optimal behavior is thus to eliminate any exposure

to the uncertainty, which is achieved by equalizing the utility derived from a two-

period lifetime with the utility derived from a one-period lifetime. We showed that the

optimal demand for annuities is in this case negative and finite. The utility benefits

12
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of a longer lifespan are then compensated by a reduction in consumption due to the

reimbursement of the annuitized debt.

By combining these results with Assumption 3 and using a continuity argument,

we conclude there exists a finite degree of ambiguity aversion such that the zero annu-

itization strategy is optimal if and only if the DM’s ambiguity aversion is larger than

this threshold.

Previous articles using an EU framework have not been able to show that a zero

annuitization strategy can be optimal when annuities are fairly priced: a strong bequest

motive, or a strong risk aversion reduce the demand for annuities but do not imply a

negative demand. Of course, allowing for a low annuities return reinforces our results:

the demand for annuities is then negative whatever the degree of ambiguity aversion.

To illustrated numerically our results, we consider a simple case where there are

only two survival distributions which represent two types of respectively “good” and

“bad” health. With subjective probability q ∈ [0, 1], the DM thinks she is of the “good”

type for which the survival probability is p1 ∈ (0, 1], while she is, with probability

1 − q, of the “bad” type for which the survival probability is p2 ∈ [0, p1). We assume,

moreover, that the bad health state does not imply additional costs and that the

absolute ambiguity aversion is constant and is denoted α ≥ 0. The functional φ(.) is

then an exponential function which satisfies:

φ(x) =





1− e−αx

α
if α > 0,

x if α = 0.

In this case, the objective function is:

φ−1(E(φ(U(a, x, p̃)))) =

−
ln
{
qe−α(p1 − p2)(u[c(a, x), xR]− v[(w − a)R2])} + 1− q

α
+ U(a, x, p2)

Limit cases are derived using the Hôpital’s rule. We obtain:

lim
α→0

φ−1(E(φ(U(a, x, p̃)))) = U(a, x, p1q + (1− q)p2),

13
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which is the EU case and where p1q + (1 − q)p2 is the subjective survival probability.

Moreover9:

lim
α→+∞

φ−1(E(φ(U(a, x, p̃)))) = min{U(a, x, p1),U(a, x, p2)}. (13)

The calibration of the model has been done to reproduce a proportion of the initial

endowment invested in annuities of about 70% in the EU case with fair annuities

return. We have thus chosen the following functional forms: u[c, xR] = c0.7 + (xR)0.3

and v[(w− a)R2] = [(w− a)R2]0.3, and the following parameters: w = 1, p1 = q = 0.8,

p2 = 0.2, R = 2 and Ra = 2.9412 which correspond to an actuarially fair annuity

system. Since there is no consensus in the literature about the value of the ambiguity

aversion coefficient except that it is likely to be heterogeneous among individual (see

Borghans et al. [5]), we plotted in Figure 1 the optimal demand for annuities and

the difference between the utility if alive in the second period and the utility if not as

functions of the absolute ambiguity aversion.
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Figure 1: The impact of ambiguity aversion

The LHS shows that ambiguity aversion strongly affects the demand for annuities:

the proportion of the initial endowment being invested in annuities goes from about

9See Appendix C for details.
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70% in the EU case to 0% in the case such that absolute ambiguity aversion is about 6.

The RHS shows that the difference in utilities monotonically reduces with the aversion.

4 Conclusion

In this paper, we have studied the optimal demand for annuities in a life-cycle model

with a bequest motive. We claimed that ambiguity aversion to uncertain survival

probabilities can explain the observed low demand for annuities. Indeed, purchasing

annuities means participating to a lottery, which is very specific since it is a bet on

longevity. Benartzi et al. [2] pointed out the fact that “an annuity should be viewed

as a risk-reducing strategy, but it is instead often considered as a gamble”. We showed

that ambiguity aversion can be a rational for that attitude: a more ambiguity averse

DM has been shown to be more reluctant to participate to the lottery and, thus, holds

less annuities in her portfolio. Moreover, we proved that for sufficiently large ambiguity

aversion, the demand for annuities is non positive.

Importantly, this result notably holds for arbitrarily low bequest motives and for

fair annuity return. We therefore think that aversion to uncertain survival probabilities

can contribute to explain, with other factors such as bequest motives or unfair pricing

of annuities, the observed low demand for annuities. A natural extension of our work

would be considering a multi-period life-cycle model. The dynamic framework proposed

by Kreps and Porteus [29] and Klibanoff et al. [28], applied to life-cycle decisions as in

Peijnenburg [36], could be a nice setting for that purpose.
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Appendix

Appendix A – Proof of Proposition 1.

As a preliminary, let us establish that u′′11+R
2u′′22−2Ru′′12 < 0, u′′12−Ru′′22 > 0 and

Ru′′12 − u′′11 > 0.

First, as the Hessian of u is negative definiteness, it is straightforward that u′′11 +

R2u′′22 − 2Ru′′12 < 0. Second, consider the static program maxc,x u[c, xR] subject to the

constraint Ω = c + x where Ω is the life-cycle income of an agent. This program is

equivalent to maxc u[c, (Ω− c)R] or maxx u[Ω− x, xR]. Then, using the FOC of these

programs and the implicit function theorem, there exists two functions A and B such

that c = A(Ω) and x = B(Ω). It is straightforward that A′(Ω) has the sign of u′′12−Ru
′′

22

while B′(Ω) has the one of Ru′′12 − u′′11. By definition, c and x are normal goods if and

only if ∂c/∂Ω and ∂x/∂Ω are positive. Then, Assumption 1 implies u′′12 − Ru′′22 > 0

and Ru′′12 − u′′11 > 0.

A.1 – Proof of statement (i).

Using (4), let us define F (a, x) = −u′1[c(a, x), xR] + Ru′2[c(a, x), xR] = 0. Under

Assumption 1, F ′

1(a, x) = (Ra−R)(Ru
′′

12−u
′′

11) is non negative whereas F ′

2(a, x) = u′′11+

R2u′′22−2Ru′′12 is negative. Then, there exists a continuous and differentiable function f

such that x = f(a) and, under Assumption 1, 0 ≤ f ′(a) = −F ′

1(a, x)/F
′

2(a, x) ≤ Ra−R.

Replacing x = f(a) and (4) in (3) allows us to define the solution (ā, f(ā)) as a pair

satisfying:

G(a, Ra, p) = p(Ra − R)u′2[ĉ (a), f(a)R]− (1− p)Rv′[(w − a)R2] = 0.

Then, an optimal demand for annuities ā is a real root of G(a, Ra, p) = (Ra −

R)pϕ(a)−R(1− p)ψ(a) where ϕ(a) = u′2[ĉ (a), f(a)R] and ψ(a) = v′[(w− a)R2]. After

computations, ϕ′(a) = −R(Ra − R)(u′′ 2
12 − u′′11u

′′

22)/F
′

2(a, x) and ψ′(a) = −R2v′′[(w −

a)R2]. Then, under Assumption 1, ϕ is a decreasing function whereas ψ is an increasing
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one, implying G′

1(a, Ra, p) < 0. Moreover ϕ(−Rw/(Ra − R)) = +∞, 0 < ϕ(w) <

+∞, 0 < ψ(−Rw/(Ra − R)) < +∞ and ψ(w) = +∞. Then, as G′

1(a, Ra, p) < 0,

G(−Rw/(Ra − R), Ra, p) > 0 and G(w,Ra, p) < 0, there exists a unique optimal pair

(ā, x̄). This pair is such that ā ∈ (−Rw/(Ra − R), w) and 0 < x̄ = f(ā) < w.

A.2 – Proof of statement (ii).

Since G(ā, Ra, p) = 0 and G′

1(a, Ra, p) < 0, ā is positive if and only if G(0, Ra, p)

is positive. Importantly f(0) is independent of Ra because (4) is independent of Ra

when a = 0. Consequently, ϕ(0) = u′2[Rw − f(0), f(0)R] and ψ(0) = v′[wR2] are

independent of Ra and we have G′

2(0, Ra, p) = pϕ(0) > 0. Note that G(0, R/p, p) =

R(1− p)(u′2[Rw − f(0), f(0)R]− v′[wR2]). As f(0) < wR and u′2[c, y] ≥ v′[y], we have

G(0, R/p, p) > 0. Since G(0, R, p) < 0 and G′

2(0, Ra, p) > 0, there exists a unique

R̂a ∈ (R,R/p) such that G(0, R̂a, p) = 0. Consequently, ā is positive if and only if Ra

is larger than R̂a. �

A.3 – Proof of statement (iii).

According to Appendix A.2, ā ≥ 0 if and only if G(0, Ra, p) ≥ 0. As G′

3(0, Ra, p) >

0, G(0, Ra, 0) = −Rv′[wR2] < 0 and G(0, Ra, 1) = (Ra − R)u′2[ĉ(0), f(0)R] > 0, there

exists a unique p̂ ∈ (0, 1) such that ā is positive if and only if p is larger than p̂. �

Appendix B – Proof of Proposition 2.

As a preliminary, it would be useful to establish the following lemma:

Lemma 1 If (4) is satisfied (i.e., if x̄ = f(ā)) then the difference between u[.] the

utility if alive and v[.] the utility if not is positive if and only if p is larger than a

threshold p̌ ∈ (0, p̂). Moreover, the demand for annuities a equalizing the utilities in

the two states of nature is unique and negative.

Proof. Let τ(a) = u[ĉ(a), f(a)R] be the utility if alive. As 0 ≤ f ′(a) ≤ Ra − R

and τ ′(a) = [(Ra−R)−f
′(a)]u′1[ĉ(a), f(a)R]+Rf

′(a)u′2[ĉ(a), f(a)R], the utility if alive
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increases with the demand for annuity while the utility if not, namely v[(w − a)R2],

decreases with a. Hence, the difference between u[.] the utility if alive and v[.] the

utility if not:

ξ(a) = u[ĉ(a), f(a)R]− v[(w − a)R2]

increases with respect to a.

Let us define a, the demand for annuities equalizing the utilities in the two states

of nature (i.e. such that ξ(a) = 0). Under Assumption 2 ξ(−wR/(Ra−R)) = u[0, 0]−

v[R2Raw/(Ra − R)] < 0 and ξ(0) = u[ĉ(0), f(0)R] − v[wR2] > 0. As ξ′(a) > 0, the

demand for annuities a is unique and negative.

As ξ(a) = 0 and ξ′(a) > 0, ξ(ā) > 0 if and only if ā > a, i.e. if and only

if G(a, Ra, p) > 0. As G′

3(a, Ra, p) > 0, G(a, Ra, 0) = −Rv′[(w − a)R2] < 0 and

G(a, Ra, 1) = (Ra − R)u′2[ĉ(a), f(a)R] > 0, there exists a unique p̌ ∈ (0, 1) such that

ξ(ā) is positive if and only if p is larger than p̌. As G(a, Ra, p̌) = G(ā, Ra, p̂) = 0, a < 0,

G′

1(a, Ra, p) < 0 and G′

3(a, Ra, p) > 0 we have p̌ < p̂. �

We now consider the problem (Pφ) and denote by (a⋆, x⋆) its solution which is the

solution of (10) and (11).

B.1 – Proof of statement (i).

We first show that a⋆ is lower than ā. Let us define the random variable Û(a, p̃) =

U(a, f(a), p̃) where the application x = f(a) is derived from (11). Then, Û(a, p̃) repre-

sents the expected utility when the budget constraint (1) and the consumption-bequest

optimal allocation (11) are satisfied. It is a function of the random variable p̃. More-

over, let Û(a, pε) denotes the expected utility associated to pε, a realization of p̃. Then,

the system of equations (10) and (11) rewrites as a single equation in a:

η
φ
(a) = E(φ′(Û(a, p̃)){p̃(Ra −R)u′1[ĉ (a), f(a)R]− (1− p̃)R2v′[(w − a)R2]}) = 0.

We are going to prove that η
φ
(a) > 0, η

φ
(ā) < 0 and η′

φ
(a) < 0 for a ∈ [a, ā].
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As Û(a, p̃) is independent of p̃, η
φ
(a) has the sign of:

E(p̃(Ra − R)u′1[ĉ(a), f(a)R]− (1− p̃)R2v′[(w − a)R2])

i.e., since Ep̃ = p and (11), the one of G(a, Ra, p). Under Assumption 3 and according

to Lemma 1 we have G(a, Ra, p) > 0 and, consequently, η
φ
(a) > 0. Since G(ā, Ra, p) =

0, using (11) we have η
φ
(ā) = E(φ′(Û(ā, p̃))RG(ā, Ra, p̃)) = Cov(φ′(Û(ā, p̃)), RG(ā, Ra, p̃)) <

0. Since φ is concave and G′

1(a, Ra, p̃) < 0, η′
φ
(a) < 0. Consequently, η

φ
has a unique

real root that shall be denoted a⋆ and that belongs to (a, ā).

Importantly the derivative of function Û(a, pε) with respect to a realization pε is:

Û ′

2(a, pε) = u[ĉ(a), f(a)R]− v[(w − a)R2] ≡ ξ(a).

Then, ξ(a) = Û ′

2(a, pε) is independent of any realizations of p̃. Since ξ′(a) > 0,

ξ(a) = 0 and a⋆ > a we have ξ(a⋆) ≥ 0.

We now show that a⋆ decreases with ambiguity aversion. The strategy is to consider

two independent DM. The problem of the first DM is given by (Pφ) and her optimal

demand for annuities is denoted a⋆. The second DM faces the similar problem (Pψ)

with ψ ≡ T ◦ φ and where T is an increasing and concave function. Her optimal

demand, denoted a⋆⋆, is solution of:

η
T◦φ

(a) = E(ψ′(Û(a, p̃)){p̃(Ra −R)u′1[ĉ (a), f(a)R]− (1− p̃)R2v′[(w − a)R2]}) = 0,

where ψ′(Û(a, p̃)) = T ′(φ(Û(a, p̃)))φ′(Û(a, p̃)). Note that η
T◦φ

(a) is a decreasing func-

tion of a.

From Step 1 to Step 4 it supposed that p̃ has only two realizations, p1 and p2,

satisfying 1 ≥ p1 > p2 ≥ 0, and whose occurrence probabilities are respectively q and

1− q. The result obtained is generalized Step 5 for any distribution of p̃.

Step 1 – Û(a⋆, p1) ≥ Û(a⋆, p2) and Û(a⋆⋆, p1) ≥ Û(a⋆⋆, p2).

Let a♯ an optimum (i.e. a♯ = a⋆ or a⋆⋆). Then, we have Û(a♯, p1) − Û(a♯, p2) =
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(p1 − p2)ξ(a
♯). As we have proved that ξ(a♯) ≥ 0, we have Û(a♯, p1) ≥ Û(a♯, p2) for

a♯ = a⋆ and a♯ = a⋆⋆.

Step 2 – Û(a⋆, p1)− Û(a⋆⋆, p1) and Û(a⋆, p2)− Û(a⋆⋆, p2) have opposite signs.

Proceed by contradiction. Suppose first they are both positive. This implies that

E(ψ(Û(a⋆, p̃))) > E(ψ(Û(a⋆⋆, p̃))), which is not possible since E(ψ(Û(a⋆⋆, p̃))) is a

maximum. Similarly, they can not be both negative because this would implies that

E(φ(Û(a⋆, p̃))) is not a maximum.

Step 3 – Û(a⋆, p1) > Û(a⋆⋆, p1) and Û(a⋆, p2) < Û(a⋆⋆, p2).

As a preliminary, the definition of a maximum yields E(φ(Û(a⋆, p̃))) > E(φ(Û(a⋆⋆, p̃))),

which rewrites:

q[φ(Û(a⋆⋆, p1))− φ(Û(a⋆, p1))] < (1− q)[φ(Û(a⋆, p2))− φ(Û(a⋆⋆, p2))]. (14)

Equivalently, E(ψ(Û(a⋆⋆, p̃))) > E(ψ(Û(a⋆, p̃))) rewrites:

q[ψ(Û(a⋆⋆, p1))− ψ(Û(a⋆, p1))] > (1− q)[ψ(Û(a⋆, p2))− ψ(Û(a⋆⋆, p2))]. (15)

Now proceed by contradiction by supposing that Û(a⋆, p1) < Û(a⋆⋆, p1). Using Step

1 and 2, this implies that Û(a⋆⋆, p2) < Û(a⋆, p2) < Û(a⋆, p1) < Û(a⋆⋆, p1). Since φ and

ψ are both increasing, dividing (15) by (14) yields the following inequalities:

ψ(Û(a⋆⋆, p1))− ψ(Û(a⋆, p1))

φ(Û(a⋆⋆, p1))− φ(Û(a⋆, p1))
>
ψ(Û(a⋆, p2))− ψ(Û(a⋆⋆, p2))

φ(Û(a⋆, p2))− φ(Û(a⋆⋆, p2))
> 0. (16)

Denote y1 = φ(Û(a⋆⋆, p2)), y2 = φ(Û(a⋆, p2)), y3 = φ(Û(a⋆, p1)), and y4 = φ(Û(a⋆⋆, p1)).

Hence y1 < y2 < y3 < y4 and (16) rewrites as follows:

T (y4)− T (y3)

y4 − y3
>
T (y2)− T (y1)

y2 − y1
. (17)

This latter inequality is true if and only if T is convex. Since T is concave, conclude

that Û(a⋆, p1) > Û(a⋆⋆, p1) and, using Step 2, that Û(a⋆, p2) < Û(a⋆⋆, p2).
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Step 4 – a⋆ > a⋆⋆ for a binary distribution.

For an optimum a, we have Û(a, p1)− Û(a, p2) = (p1 − p2)ξ(a) where ξ(a) > 0 and

ξ′(a) > 0. Then, Û(a, p1) − Û(a, p2) is an increasing function of a. According to Step

1 and 2, Û(a⋆, p1)− Û(a⋆, p2) > Û(a⋆⋆, p1)− Û(a⋆⋆, p2) ≥ 0. Consequently, a⋆ > a⋆⋆.

Step 5 – a⋆ > a⋆⋆ for any distribution of p̃.

We have previously shown that η
φ
(a) and η

T◦φ
(a) are decreasing functions of a.

Consequently, (a⋆ > a⋆⋆) if and only if (E(g(p̃)) = 0 ⇒ E(h(p̃)) < 0) where g(p̃) =

φ′(Û(a⋆, p̃)){p̃(Ra−R)u
′

1[ĉ(a
⋆), f(a⋆)R]−(1−p̃)R2v′[(w−a⋆)R2]} and h(p̃) = T ′(φ(Û(a⋆,

p̃)))φ′(Û(a⋆, p̃)){p̃(Ra − R)u′1[ĉ(a
⋆), f(a⋆)R]− (1− p̃)R2v′[(w − a⋆)R2]}.

The diffidence theorem then applies (see Lemma 1 page 84 in Gollier [17]) and, thus,

the result a⋆ > a⋆⋆ holds for any distribution of p̃. Then, the demand for annuities

decreases with ambiguity aversion.

B.2 – Proof of statement (ii).

According to (9) the following maxmin problem, denoted (P∞), is obtained when

the absolute ambiguity aversion, given by −φ′′/φ′, is infinite:

max
a,x

min
pε∈Supp(p̃)

U(a, x, pε)

s.t.





U(a, x, pε) = pεu[c(a, x), xR] + (1− pε)v[(w − a)R2],

c = c(a, x) = Raa+R(w − a)− x. (P∞)

First observe that the optimum (a♯, x♯) is such that x♯ = f(a♯). Indeed, for any

optimal value p♯ε, (a
♯, x♯) is determined by maximizing U(a, x, p♯ε) subject to (1) and

(2). The FOC (4) of the expected utility problem (P0) (where p = p♯ε) is independent

of p♯ε and implies that x♯ = f(a♯).

Consequently, there are only three candidates for the optimum a♯ according to the

sign of ξ(a♯).

The first candidate corresponds to the case where ξ(a♯) = 0. Then it corresponds
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to the (unique) pair (a, f(a)) exhibited in Lemma 1. The maxmin utility attainable is

then v[(w − a)R2].

The second candidate ă corresponds to the case where ξ(a♯) < 0. As Û(ă, pε) =

pεξ(ă) + v[(w − ă)R2] < v[(w − ă)R2], the maxmin utility attainable is lower than

v[(w − ă)R2]. Importantly ă is obviously the solution of the expected utility problem

(P0) where p = pM is the upper bound of Supp(p̃), the support of p̃. Then, according

to Assumption 3 and Lemma 1, we have a < ă and, consequently, v[(w − ă)R2] <

v[(w− a)R2]. Since the maxmin utility attainable with ă is strictly lower than the one

attainable with a, we have necessarily ξ(a♯) ≥ 0 at the optimum.

The third candidate ǎ corresponds to the case where ξ(a♯) > 0. Importantly ǎ is

the solution of the expected utility problem (P0) where p = pm is the lower bound of

Supp(p̃). Then, according to Assumption 3 and Lemma 1, we have a < ǎ. We now

show that this third candidate cannot solves the problem (P∞) because if ǎ solves the

problem (P∞) we have necessarily a ≥ ǎ. Indeed, assume that ǎ solves the problem

(P∞). Then we have Û(a, pm) ≤ Û(ǎ, pm). As 0 = ξ(a) = Û ′

2(a, pε) < ξ(ǎ) = Û ′

2(ǎ, pε),

we obtain Û(a, 1) ≤ Û(ǎ, 1), i.e. u[ĉ(a), f(a)R] ≤ u[ĉ(ǎ), f(ǎ)R]. As, u[ĉ (a), f(a)R] is

increasing function of a, we have a ≥ ǎ.

Consequently, we have ξ(a♯) = 0 at the optimum and the optimal pair (a♯, x♯) which

solves the problem (P∞) is the pair (a, f(a)) exhibited Lemma 1. Then, according to

Lemma 1, the demand for annuities is always negative when ambiguity aversion is

infinite. �

Appendix C – Derivation of equation (13).

There are two cases.

Suppose first that u[c, xR] ≥ v[(w − a)R2]. Then, it is straightforward that:

lim
α→+∞

φ−1(E(φ(U(a, x, p̃)))) = U(a, x, p2).

Suppose now that u[c, xR] < v[(w − a)R2] and let us denote α = 1/γ and σ =
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v[(w − a)R2]− u[c, xR]. Then:

lim
α→+∞

φ−1(E(φ(U(a, x, p̃)))) = lim
γ→0

[U(a, x, p2)− γ ln(qe
(p1−p2)σ

γ + 1− q)] = U(a, x, p1),

which implies (13). �
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